A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers
نویسندگان
چکیده
A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4-12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100-200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R² = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device.
منابع مشابه
Dynamic pH mapping in microfluidic devices by integrating adaptive coatings based on polyaniline with colorimetric imaging techniques.
In this paper we present a microfluidic device that has integrated pH optical sensing capabilities based on polyaniline. The optical properties of polyaniline coatings change in response to the pH of the solution that is flushed inside the microchannel offering the possibility of monitoring pH in continuous flow over a wide pH range throughout the entire channel length. This work also features ...
متن کاملPolyaniline nanofibers: a unique polymer nanostructure for versatile applications.
Known for more than 150 years, polyaniline is the oldest and potentially one of the most useful conducting polymers because of its facile synthesis, environmental stability, and simple acid/base doping/dedoping chemistry. Because a nanoform of this polymer could offer new properties or enhanced performance, nanostructured polyaniline has attracted a great deal of interest during the past few ye...
متن کاملOptical pH Sensor Based on Quinizarin for Alkaline pH Regions
The development of an optical pH sensor based on immobilization of quinizarin (1,4-dihydroxyanthraquinone) on a triacetylcellulose membrane was described. The resulting membrane exhibited fast color change from yellow to violet, while changing the pH in alkaline region. The immobilized quinizarin showed a broader dynamic range from (pH 9.4-11.4) with respect to free form (pH 8.8-10.4). The sens...
متن کاملGreen Synthesis of Novel Polyaniline Nanofibers: Application in pH Sensing.
An optically active polyaniline nanomaterial (PANI-Nap), doped with (S)-naproxen, was developed and evaluated as a potent pH sensor. We synthesized the material in one pot by the addition of the dopant, (S)-naproxen, prior to polymerization, followed by the addition of the oxidizing agent (ammonium persulfate) that causes polymerization of the aniline. This green chemistry approach allowed us t...
متن کاملAn Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva
Saliva contains important personal physiological information that is related to some diseases, and it is a valuable source of biochemical information that can be collected rapidly, frequently, and without stress. In this article, we reported a new and simple localized surface plasmon resonance (LSPR) substrate composed of polyaniline (PANI)-gold hybrid nanostructures as an optical sensor for mo...
متن کامل